大腦是一種很難治療的器官,在近期刊登在《Science Translational Medicine》期刊上的一項研究,來自美國約翰霍普金斯大學(xué)的研究人員說,他們已設(shè)計出一種改進(jìn)的納米顆粒,當(dāng)在鼠類和人組織上接受測試時,它能夠安全和可預(yù)見性地深入滲透進(jìn)大腦之中。并且他們發(fā)現(xiàn)一種方法來阻止嵌入藥物的納米顆粒附著到它們的周圍環(huán)境之中,這樣當(dāng)進(jìn)入大腦時,它們能夠擴(kuò)散開來。
在利用手術(shù)移除腦瘤之后,包括將化療藥物直接施加到手術(shù)位點之中的標(biāo)準(zhǔn)治療方法被用來殺死利用手術(shù)不能除去的任何癌細(xì)胞。迄今為止,這種阻止腫瘤復(fù)發(fā)的方法只取得部分成功,這是因為很難施加足夠高劑量的化療藥物來充分地穿過大腦組織,在確保療效的同時也要保證劑量足夠低以便讓病人和健康組織不遭受毒副作用。
為了克服這種劑量挑戰(zhàn),研究人員設(shè)計出在一段時間內(nèi)穩(wěn)定地運送少量藥物的納米顆粒。常規(guī)性運送藥物的納米顆粒是在嚴(yán)緊的球中,通過將藥物分子與微觀的繩狀分子捕獲在一起而產(chǎn)生的,而當(dāng)與水接觸時,它們緩慢地降解。但是這些納米顆粒并不能非常好地發(fā)揮作用,這是因為在注射位點,它們與細(xì)胞粘附在一起,因而不能更加深入地遷移到組織之中。
論文第一作者Elizabeth Nance和神經(jīng)外科醫(yī)師Graeme Woodworth博士猜測,如果運送藥物的納米顆粒與它們的周邊環(huán)境發(fā)生的相互作用最小化,那么藥物滲透作用可能會得到改善。Nance首先利用一種臨床測試分子聚乙二醇(PEG)來包被不同大小的納米塑料珠,其中其他人已證實PEG能夠保護(hù)納米顆粒不受體內(nèi)防御機(jī)制的破壞。研究人員也推斷一層厚的PEG可能也讓這些珠子更加光滑。
研究人員將這些包被有PEG的塑料珠注射到鼠類和人大腦組織切片之中。他們首先利用發(fā)光的標(biāo)簽來標(biāo)記這些塑料珠,從而能夠讓他們觀察這些塑料珠在組織中的移動。與沒有包被PEG的珠子或?qū)氊愐粚颖〉腅PEG的珠子相比,一層厚的PEG允許更大的珠子滲透大腦組織,甚至這些珠子將近是人們之前認(rèn)為可能在大腦內(nèi)滲透的最大大小的2倍時,它們也能滲透。他們?nèi)缓笤诨畹氖箢惔竽X中測試了這些珠子,并發(fā)現(xiàn)了同樣的研究結(jié)果。
研究人員隨后研究了攜帶化療藥物紫杉醇(paclitaxel)的生物可降解的納米顆粒,并利用PEG包被它們。 與期待中的一樣,在大鼠腦組織中,沒有PEG包被的納米顆粒極少移動,而包被有PEG的納米顆粒在腦組織中非常好地分布。
Nance說,“非常令人興奮的是,我們?nèi)缃駬碛心軌驍y帶5倍多藥物的納米顆粒,能夠在3倍長的時間內(nèi)釋放這種藥物,而且在腦組織中更深地滲透。下一步就是觀察我們是否能夠延緩鼠類動物體內(nèi)腫瘤生長或復(fù)發(fā)。”
A Dense Poly(Ethylene Glycol) Coating Improves Penetration of Large Polymeric Nanoparticles Within Brain Tissue
Elizabeth A. Nance1,2,*, Graeme F. Woodworth1,3,*, Kurt A. Sailor4, Ting-Yu Shih2, Qingguo Xu1,5, Ganesh Swaminathan2, Dennis Xiang2, Charles Eberhart1,5,6 and Justin Hanes
Prevailing opinion suggests that only substances up to 64 nm in diameter can move at appreciable rates through the brain extracellular space (ECS). This size range is large enough to allow diffusion of signaling molecules, nutrients, and metabolic waste products, but too small to allow efficient penetration of most particulate drug delivery systems and viruses carrying therapeutic genes, thereby limiting effectiveness of many potential therapies. We analyzed the movements of nanoparticles of various diameters and surface coatings within fresh human and rat brain tissue ex vivo and mouse brain in vivo. Nanoparticles as large as 114 nm in diameter diffused within the human and rat brain, but only if they were densely coated with poly(ethylene glycol) (PEG). Using these minimally adhesive PEG-coated particles, we estimated that human brain tissue ECS has some pores larger than 200 nm and that more than one-quarter of all pores are ≥100 nm. These findings were confirmed in vivo in mice, where 40- and 100-nm, but not 200-nm, nanoparticles spread rapidly within brain tissue, only if densely coated with PEG. Similar results were observed in rat brain tissue with paclitaxel-loaded biodegradable nanoparticles of similar size (85 nm) and surface properties. The ability to achieve brain penetration with larger nanoparticles is expected to allow more uniform, longer-lasting, and effective delivery of drugs within the brain, and may find use in the treatment of brain tumors, stroke, neuroinflammation, and other brain diseases where the blood-brain barrier is compromised or where local delivery strategies are feasible.
意見反饋 關(guān)于我們 隱私保護(hù) 版權(quán)聲明 友情鏈接 聯(lián)系我們
Copyright 2002-2025 Iiyi.Com All Rights Reserved